
pychoco
Release 0.1.1

Dimitri Justeau-Allaire, Charles Prud'homme

Oct 06, 2022

CONTENTS:

1 Documentation 3
1.1 Installation . 3
1.2 Quickstart . 4
1.3 API . 5

2 Indices and tables 17

i

ii

pychoco, Release 0.1.1

Python bindings for the Choco Constraint programming solver (https://choco-solver.org/).

Choco-solver is an open-source Java library for Constraint Programming (see https://choco-solver.org/). It comes with
many features such as various types of variables, various state-of-the-art constraint, various search strategies, etc.

The PyChoco library uses a native-build of the original Java Choco-solver library, in the form of a shared library, which
means that it can be used without any JVM. This native-build is created with GraalVM (https://www.graalvm.org/)
native-image tool.

We heavily relied on JGraphT Python bindings (https://python-jgrapht.readthedocs.io/) source code to understand how
such a thing could be achieved, so many thanks to JGraphT authors!

CONTENTS: 1

https://choco-solver.org/
https://choco-solver.org/
https://www.graalvm.org/
https://python-jgrapht.readthedocs.io/

pychoco, Release 0.1.1

2 CONTENTS:

CHAPTER

ONE

DOCUMENTATION

1.1 Installation

We are still in the process of implementing and releasing PyChoco. So currently the only way to install it and try it is to
follow the entire build-from-source process. However, we plan to release pre-built Python wheels for various operating
systems. Stay tuned!

1.1.1 Installation from PyPI

We automatically build 64-bit wheels for Python versions 3.6, 3.7, 3.8, 3.9, and 3.10 on Linux, Windows and MacOSX.
They can be directly downloaded from PyPI (https://pypi.org/project/pychoco/) or using pip:

$ pip install pychoco

1.1.2 Build from source

The following system dependencies are required to build PyChco from sources:

• GraalVM >= 20 (see https://www.graalvm.org/)

• Native Image component for GraalVM (see https://www.graalvm.org/22.1/reference-manual/native-image/)

• Apache Maven (see https://maven.apache.org/)

• Python >= 3.6 (see https://www.python.org/)

• SWIG >= 3 (see https://www.swig.org/)

Once these dependencies are satisfied, clone the current repository:

$ git clone --recurse-submodules https://github.com/dimitri-justeau/pychoco.git

The –recurse-submodules is necessary as the choco-solver-capi is a separate git project included as a submodule (see
https://github.com/dimitri-justeau/choco-solver-capi). It contains all the necessary to compile Choco-solver as a shared
native library using GraalVM native-image.

Ensure that the $JAVA_HOME environment variable is pointing to GraalVM, and from the cloned repository execute
the following command:

$ sh build.sh

3

https://pypi.org/project/pychoco/
https://www.graalvm.org/
https://www.graalvm.org/22.1/reference-manual/native-image/
https://maven.apache.org/
https://www.python.org/
https://www.swig.org/
https://github.com/dimitri-justeau/choco-solver-capi

pychoco, Release 0.1.1

This command will compile Choco-solver into a shared native library and compile the Python bindings to this native
API using SWIG.

Finally, run:

$ pip install .

And voilà !

1.2 Quickstart

Pychoco’s API is quite close to Choco’s Java API. The first thing to do is to import the library and create a model object:

from pychoco import Model

model = Model("My Choco Model")

Then, you can use this model object to create variables:

intvars = model.intvars(10, 0, 10)
sum_var = model.intvar(0, 100)

You can also create views from this Model object:

b6 = model.int_ge_view(intvars[6], 6)

Create and post (or reify) constraints:

model.all_different(intvars).post()
model.sum(intvars, "=", sum_var).post()
b7 = model.arithm(intvars[7], ">=", 7).reify()

Solve your problem:

model.get_solver().solve()

And retrieve the solution:

print("intvars = {}".format([i.get_value() for i in intvars]))
print("sum = {}".format(sum_var.get_value()))
print("intvar[6] >= 6 ? {}".format(b6.get_value()))
print("intvar[7] >= 7 ? {}".format(b7.get_value()))

> "intvars = [3, 5, 9, 6, 7, 2, 0, 1, 4, 8]"
> "sum = 45"
> "intvar[6] >= 6 ? False"
> "intvar[7] >= 7 ? False"

4 Chapter 1. Documentation

pychoco, Release 0.1.1

1.3 API

1.3.1 Model

The model is the core component of PyChoco. A model is created using the Model() constructor, and it is the entry
point to create variables, constraints, and solve problems.

1.3.2 Variables

A variable is an unknown, mathematically speaking. The goal of a resolution is to assign a value to each variable. The
domain of a variable –set of values it may take– must be defined in the model. Currently, PyChoco supports boolean
variables (BoolVar), integer variables (IntVar), and set variables (SetVar). Variables are created using a Model object
(see Model). When creating a variable, the user can specify a name to help reading the output.

Variable

The Variable class is the superclass of all classes, it contains generic methods and property that are common to all
types of variables.

IntVar

Integer variables represent a integer value, and can be created from a Model object using the following methods:

Integer variables also include additional parameters and methods to the generic Variable class:

Operations between IntVars

We took advantage of operators overloading in Python to provide some shortcuts in pychoco, so you can use the fol-
lowing operators between IntVars and ints.

• c = a + b: c is and IntVar constrained to be equal to a + b (see arithm constraint in Constraints).

• c = a - b: c is and IntVar constrained to be equal to a - b (see arithm constraint in Constraints).

• c = a * b: c is and IntVar constrained to be equal to a * b (see arithm constraint in Constraints).

• c = a / b: c is and IntVar constrained to be equal to a / b (see arithm constraint in Constraints).

• c = -a: c is an int_minus_view (see ref:views)

• c = a % b: c is the result rest of the integer division betwen a and b (see mod constraint in Constraints).

• c = a ** c c is equal to pow(a, c), c must be an int (see pow constraint in Constraints).

• c = a == b c is a BoolVar, which is True only if a == b.

• c = a <= b c is a BoolVar, which is True only if a <= b.

• c = a < b c is a BoolVar, which is True only if a < b.

• c = a >= b c is a BoolVar, which is True only if a >= b.

• c = a > b c is a BoolVar, which is True only if a > b.

• c = a != b c is a BoolVar, which is True only if a != b.

1.3. API 5

pychoco, Release 0.1.1

BoolVar

Boolean variables represent a boolean value (0/1 or False/True). They are a special case of integer variables where the
domain is restricted to [0, 1], and can be created from a Model object using the following methods:

Boolean variables also include additional parameters and methods to the generic Variable class:

Operations between BoolVars

We took advantage of operators overloading in Python to provide some shortcuts in pychoco, so you can use the fol-
lowing operators between BoolVars and bools.

• b = b1 & b2: b is a BoolVar which is True only if b1 and b2 are True (see and_ constraint in Constraints).

• b = b1 | b2: b is a BoolVar which is True only if b1 or b2 is True (see or_ constraint in Constraints).

• b = ~b1: b is a bool_not_view over b1 (see Views).

• b = b1 == b2 is a BoolVar which is True only if b1 == b2.

• b = b1 != b2 is a BoolVar which is True only if b1 != b2.

SetVar

Set variables represent a set of integers, which value must belong to a set interval [lb, ub]. The lower bound lb is the
set of mandatory values (or kernel) for any instantiation of the variable, while the upper bound ub is the set of potential
values (or envelope) for any instantiation of the variable. Set variables can be created from a model object using the
following method:

Set variables also include additional parameters and methods the generic Variable class:

GraphVar

Graph variables represent a graph (directed or undirected), which value must belong to a graph interval [lb, ub]. The
lower bound lb (or kernel) is a graph that must be included in any instantiation of the variable, while the upper bound
ub (or envelope) is such that any instantiation of the variable is a subgraph of it.

The bounds of a graph variable must be created using the graph API of pychoco (see below).

Undirected Graph variables can be created from a model object using the following methods:

Undirected variables also include additional parameters and methods the generic Variable class:

Directed Graph variables can be created from a model object using the following methods:

Directed variables also include additional parameters and methods the generic Variable class:

UndirectedGraph API

The create_undirected_graph factory function allows to instantiate a directed graph from a list of nodes and a list of
edges:

This function returns an UndirectedGraph object:

6 Chapter 1. Documentation

pychoco, Release 0.1.1

DirectedGraph API

The create_directed_graph factory function allows to instantiate a directed graph from a list of nodes and a list of edges:

This function returns a DirectedGraph object:

1.3.3 Constraints

A constraint is a logic formula defining allowed combinations of values for a set of variables (see Variables), i.e.,
restrictions over variables that must be respected in order to get a feasible solution. A constraint is equipped with a
(set of) filtering algorithm(s), named propagator(s). A propagator removes, from the domains of the target variables,
values that cannot correspond to a valid combination of values. A solution of a problem is a variable-value assignment
verifying all the constraints.

Constraints are directly declared from a Model object (see Model).

Integer and boolean constraints

All constraints over integer and boolean variables are declared in the IntConstraintFactory abstract class, which is
implemented by the Model class.

absolute

all_different

all_different_except_0

all_different_prec

all_equal

among

and

argmax

argmin

arithm

at_least_n_values

at_most_n_values

bin_packing

1.3. API 7

pychoco, Release 0.1.1

bits_int_channeling

bools_int_channeling

circuit

clauses_int_channeling

cost_regular

count

cumulative

decreasing

diff_n

distance

div

element

global_cardinality

increasing

int_value_precede_chain

inverse_channeling

keysort

knapsack

lex_chain_less

lex_chain_less_eq

lex_less

lex_less_eq

max

8 Chapter 1. Documentation

pychoco, Release 0.1.1

mddc

member

min

mod

multi_cost_regular

n_values

not

not_all_equal

not_member

or

path

pow

regular

scalar

sort

square

sub_circuit

sub_path

sum

table

times

tree

1.3. API 9

pychoco, Release 0.1.1

Set constraints

All constraints over set variables in the SetConstraintFactory abstract class, which is implemented by the Model class.
Set constraints have the set_ prefix, indeed, as several set constraints have the same name as int constraints, we made the
choice to semantically distinguish them, contrarily to the Choco Java API, as method Python does not support method
overloading.

set_all_different

set_all_disjoint

set_all_equal

set_bools_channeling

set_disjoint

set_element

set_intersection

set_ints_channeling

set_inverse_set

set_le

set_lt

set_max

set_max_indices

set_member_int

set_member_set

set_min

set_min_indices

set_nb_empty

set_not_empty

set_not_member_int

10 Chapter 1. Documentation

pychoco, Release 0.1.1

set_offset

set_partition

set_subset_eq

set_sum

set_sum_element

set_symmetric

set_union

set_union_indices

Graph constraints

All constraints over graph variables in the GraphConstraintFactory abstract class, which is implemented by the Model
class. Graph constraints have the graph_ prefix, indeed, as method Python does not support method overloading, we
made the choice to semantically distinguish them to avoid method name conflicts.

graph_anti_symmetric

graph_biconnected

graph_connected

graph_cycle

graph_degrees

graph_diameter

graph_directed_forest

graph_directed_tree

graph_edge_channeling

graph_forest

graph_in_degrees

graph_loop_set

1.3. API 11

pychoco, Release 0.1.1

graph_max_degree

graph_max_degrees

graph_max_in_degree

graph_max_in_degrees

graph_max_out_degree

graph_max_out_degrees

graph_min_degree

graph_min_degrees

graph_min_in_degree

graph_min_in_degrees

graph_min_out_degree

graph_min_out_degrees

graph_nb_cliques

graph_nb_connected_components

graph_nb_edges

graph_nb_loops

graph_nb_nodes

graph_nb_strongly_connected_components

graph_neighbors_channeling

graph_no_circuit

graph_no_cycle

graph_node_channeling

graph_node_neighbors_channeling

12 Chapter 1. Documentation

pychoco, Release 0.1.1

graph_node_predecessors_channeling

graph_node_successors_channeling

graph_nodes_channeling

graph_out_degrees

graph_reachability

graph_size_connected_components

graph_size_max_connected_components

graph_size_min_connected_components

graph_strongly_connected

graph_subgraph

graph_successors_channeling

graph_symmetric

graph_transitivity

graph_tree

1.3.4 Views

The concept of views in Constraint Programming is halfway between variables and constraints. Specifically, a view is
a special kind of variable that does not declare any domain, but instead relies on one or several other variables through
a logical relation. From a modelling perspective, a view can be manipulated exactly as any other variable. In pychoco,
the only difference that you will notice is that the is_view() method will return True when a variable is actually a view.

Views are directly declared from a Model object (see Model).

Boolean views

Boolean view can be declared over several types of variables, and behave as Boolean variables.

1.3. API 13

pychoco, Release 0.1.1

bool_not_view

set_bool_view

set_bools_view

Integer views

Integer view can be declared over several types of variables, and behave as Integer variables.

int_offset_view

int_minus_view

int_scale_view

int_abs_view

int_affine_view

int_eq_view

int_ne_view

int_le_view

int_ge_view

Set views

Set view can be declared over several types of variables, and behave as Set variables.

bools_set_view

ints_set_view

set_union_view

set_intersection_view

set_difference_view

graph_node_set_view

graph_successors_set_view

14 Chapter 1. Documentation

pychoco, Release 0.1.1

graph_predecessors_set_view

graph_neighbors_set_view

Graph views

node_induced_subgraph_view

edge_induced_subgraph_view

graph_union_view

1.3. API 15

pychoco, Release 0.1.1

16 Chapter 1. Documentation

CHAPTER

TWO

INDICES AND TABLES

• genindex

• modindex

• search

17

	Documentation
	Installation
	Installation from PyPI
	Build from source

	Quickstart
	API
	Model
	Variables
	Variable
	IntVar
	Operations between IntVars

	BoolVar
	Operations between BoolVars

	SetVar
	GraphVar
	UndirectedGraph API
	DirectedGraph API

	Constraints
	Integer and boolean constraints
	absolute
	all_different
	all_different_except_0
	all_different_prec
	all_equal
	among
	and
	argmax
	argmin
	arithm
	at_least_n_values
	at_most_n_values
	bin_packing
	bits_int_channeling
	bools_int_channeling
	circuit
	clauses_int_channeling
	cost_regular
	count
	cumulative
	decreasing
	diff_n
	distance
	div
	element
	global_cardinality
	increasing
	int_value_precede_chain
	inverse_channeling
	keysort
	knapsack
	lex_chain_less
	lex_chain_less_eq
	lex_less
	lex_less_eq
	max
	mddc
	member
	min
	mod
	multi_cost_regular
	n_values
	not
	not_all_equal
	not_member
	or
	path
	pow
	regular
	scalar
	sort
	square
	sub_circuit
	sub_path
	sum
	table
	times
	tree

	Set constraints
	set_all_different
	set_all_disjoint
	set_all_equal
	set_bools_channeling
	set_disjoint
	set_element
	set_intersection
	set_ints_channeling
	set_inverse_set
	set_le
	set_lt
	set_max
	set_max_indices
	set_member_int
	set_member_set
	set_min
	set_min_indices
	set_nb_empty
	set_not_empty
	set_not_member_int
	set_offset
	set_partition
	set_subset_eq
	set_sum
	set_sum_element
	set_symmetric
	set_union
	set_union_indices

	Graph constraints
	graph_anti_symmetric
	graph_biconnected
	graph_connected
	graph_cycle
	graph_degrees
	graph_diameter
	graph_directed_forest
	graph_directed_tree
	graph_edge_channeling
	graph_forest
	graph_in_degrees
	graph_loop_set
	graph_max_degree
	graph_max_degrees
	graph_max_in_degree
	graph_max_in_degrees
	graph_max_out_degree
	graph_max_out_degrees
	graph_min_degree
	graph_min_degrees
	graph_min_in_degree
	graph_min_in_degrees
	graph_min_out_degree
	graph_min_out_degrees
	graph_nb_cliques
	graph_nb_connected_components
	graph_nb_edges
	graph_nb_loops
	graph_nb_nodes
	graph_nb_strongly_connected_components
	graph_neighbors_channeling
	graph_no_circuit
	graph_no_cycle
	graph_node_channeling
	graph_node_neighbors_channeling
	graph_node_predecessors_channeling
	graph_node_successors_channeling
	graph_nodes_channeling
	graph_out_degrees
	graph_reachability
	graph_size_connected_components
	graph_size_max_connected_components
	graph_size_min_connected_components
	graph_strongly_connected
	graph_subgraph
	graph_successors_channeling
	graph_symmetric
	graph_transitivity
	graph_tree

	Views
	Boolean views
	bool_not_view
	set_bool_view
	set_bools_view

	Integer views
	int_offset_view
	int_minus_view
	int_scale_view
	int_abs_view
	int_affine_view
	int_eq_view
	int_ne_view
	int_le_view
	int_ge_view

	Set views
	bools_set_view
	ints_set_view
	set_union_view
	set_intersection_view
	set_difference_view
	graph_node_set_view
	graph_successors_set_view
	graph_predecessors_set_view
	graph_neighbors_set_view

	Graph views
	node_induced_subgraph_view
	edge_induced_subgraph_view
	graph_union_view

	Indices and tables

